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Phase diagram of highly asymmetric binary mixtures: A study of the role of attractive forces
from the effective one-component approach

J. Clément-Cottuz, S. Amokrane,* and C. Regnaut
Groupe de Physique des Milieux Denses, Faculte´ des Sciences et de Technologie, Universite´ Paris XII Val de Marne,

61 Avenue du Ge´néral de Gaulle, 94010, Cre´teil Cedex, France
~Received 16 August 1999!

The phase diagram of an asymmetric solute-solvent mixture is investigated at the level of the effective
one-component fluid. The solvent is taken into account by computing the potential of mean force between
solute particles at infinite dilution for different models of solvent-solvent and solute-solvent short range inter-
actions. Fluid-fluid and fluid-solid coexistence lines are determined from the free energy in the reference
hypernetted chain theory for the fluid branch and from a variational perturbation theory for the solid one. The
phase boundaries so determined compare well with recently published Monte Carlo data for mixtures of pure
hard spheres. The influence of solute-solvent and solvent-solvent short range attractive forces is then investi-
gated. When compared with pure hard core interactions, these forces are found to produce dramatic changes in
the phase diagram, especially on the solvent packing fractions at which a dense fluid of solutes can be stable
and on the separation of the fluid-fluid and fluid-solid coexistence lines. Finally, the connection of these results
with the behavior of some colloidal suspensions is emphasized.

PACS number~s!: 64.70.2p, 61.20.Gy, 82.70.2y
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I. INTRODUCTION

The phase behavior of asymmetric binary mixtures
hard spheres has been the subject of an abundant literatu
the past decade, in contrast with the case of mixtures w
attractive forces. A fundamental interest of the former lies
the fact that when the hard sphere diameter ratioR[d2 /d1 is
sufficiently high they may undergo a phase separation dri
by purely repulsive forces~hereafter 1 and 2 refer to th
small and large spheres, respectively!. While the underlying
mechanism or so called depletion effect was known from
early work on colloid-polymer mixtures@1,2# a new impetus
has been given to these studies by the work of Biben
Hansen@3#. By using particular closures of the Ornstei
Zernike equations~OZE’s!, these authors indeed pointed o
a possible phase separation in asymmetric mixtures of h
spheres. This result being in contradiction with the class
study by Lebowitz and Rowlinson@4# based on the Percus
Yevick ~PY! closure, such mixtures have thus been stud
by various methods ranging from the OZE’s@5#, density
functional theory @6# ~see also@7# for hard cubes!, ap-
proaches based on the entropy@8#, the free volume@9,10#,
the virial equation of state and virial expansions~see, for
example, @11,12# and @13–15# and references therein! to
computer simulations~see@16# for early work and@17–21#
for more recent studies!. In this last group, the recent stud
of Dijkstra et al. @19# has established that, in the effectiv
one-component representation, the fluid-fluid transition
metastable with respect to the fluid-solid one.

Besides their intrinsic interest, these studies may be
more direct relevance to the interpretation of some exp
mental data. Indeed, a picture in terms of pure hard sph
mixtures is often invoked in order to explain the behavior
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sterically stabilized suspensions in which the interactions
believed to be dominated by hard core repulsion@22–24#. It
should be noted here that the depletion attraction invoke
these interpretations arises from the presence of smaller s
but otherwise supramolecular objects~added polymers,
smaller sized solutes, etc.! but not from the solvent itself,
which is viewed as an inert background~see, however, Ref
@25#!. On the other hand, the effective interaction betwe
solutes in pure solvent-colloid mixtures, that is, without su
additional supramolecular species, has been found in sev
experiments to be strongly affected by several factors, up
the qualitative level. For instance, it was observed t
changing the solvent@26# or the temperature@26,27# may
turn it from effective attraction to effective repulsion. Var
ous experiments have also shown that AOT-water in oil m
celles exhibit a behavior that depends strongly on the na
of the oil @28–32#. The modification of the surface layer o
sodium dodecyl sulfate~SDS! @33# or AOT @34# reverse mi-
celles by a cosurfactant is now known to have a strong
pact on the conductivity or intermicellar structure. The b
havior of such a variety of physical systems, richer than t
expected from purely steric effects, emphasizes again
competition between entropy and enthalpy, which is w
known in the theory of ordinary mixtures.

From the theoretical point of view, studies based on B
ter’s sticky hard sphere model@35# in the PY approximation
have underlined the effect of short range attractions and
particular the crucial role played by heteroadhesions~see, for
example,@36–40#!. Recently, more realistic models of th
interactions have been considered and their influence in
tigated at the level of the potential of mean force of solutes
infinite dilution both by analytical approaches@41–43# and
by simulation @44#. These studies emphasized again t
strong impact of attractive forces. The latter has in particu
confirmed the qualitative predictions on the role of solu
solvent attractions at the level of the potential of mean fo
and the pair distribution function of the solute particles. T
1692 ©2000 The American Physical Society
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PRE 61 1693PHASE DIAGRAM OF HIGHLY ASYMMETRIC BINARY . . .
influence of such attractions on the phase diagram se
thus worth being considered in detail, since previous stud
focused exclusively on structural properties. We have cho
to investigate this by means of the effective one-compon
representation of the mixture first because of the limitatio
of present theoretical methods. Indeed, no reliable inte
equations of the reference hypernetted chain~RHNC! type
exist for highly asymmetric mixtures, because of the lack
appropriate bridge functions~see, for example, the compar
son of different closures in Ref.@41# and the discussion o
the HNC Pade´ approximation of Attard and Patey@45#, who
attempted to compute the bridge functions in the high as
metry regime!. The situation is not easier if one attempts
study the real mixture by simulation. Indeed, a study of
kind of that presented by Dijkstraet al. @19# for a pure hard
sphere mixture would be prohibitive in the presence of
tractions. In addition to the common difficulties in samplin
solute configurations, one should then compute the chang
energy for configurations involving several thousands
small particles~and possibly a few hundreds of large one!.
Finally, one important result of that study is the fact that t
fluid-solid ~F-S! coexistence line obtained from the simul
tion of the true mixture is not very different from that of th
effective fluid. The situation is less clear for the fluid-flu
~F-F! line, the much higher effective packing fractionsh1* of
the small spheres then involved prohibiting direct simulat
of the mixture ~see, however,@20#!. The good agreemen
between both types of simulations at lowh1* ~see also Ref.
@17# for a similar observation on the pair distribution fun
tion of large spheres! suggests that the effective fluid repr
sentation of the kind adopted here should be adequate
least for stressing the qualitative changes introduced by
tractive forces in the phase diagram at high size asymme
As specified above, this aspect is indeed the main objec
of this work.

This paper is organized as follows: In Sec. II, the theor
ical tools required to compute the phase diagram are bri
presented. They are tested against simulation data for
sphere mixtures in Sec. III. Finally, results with attracti
forces are presented in Sec. IV.

II. THEORETICAL BACKGROUND

A. Potential of mean force for solutes at infinite dilution

The description of asymmetric mixtures at the effect
one-component or McMillan-Mayer level is based on t
potential of mean force at infinite dilution of the solutes a
fixed solvent chemical potentialm1 @46#. It can also be de-
fined by formally integrating over the solvent degrees
freedom~see, for example,@17# and @19#!. For practical ap-
plications of this formalism one usually neglects the ma
body nature of this potential, and assumes it as pairwise
ditive. The study of the mixture is thus reduced to that o
one-component fluid of solute particles interacting with
effective pair potentialfeff(r), which reads~assuming inter-
actions with spherical symmetry!

feff~r !5u22~r !1f ind~r !, ~1!

whereu22(r ) is the direct solute-solute interaction potent
andf ind(r ) that between two solute particles induced by t
s
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solvent sea at chemical potentialm1 . In this work we used
two methods for estimatingf ind(r ). In the first one the su-
perposition approximation is used for the distribution fun
tion of the solvent about two isolated solutes~see, for ex-
ample,@17,43,47#!. The mean force between two spheres c
then be expressed as@43#

F~r !5
p

r 2 r1
bE

0

`

dr8
]

]r 8
u12~r 8!g12~r 8!

3E
ur 2r 8u

r 1r 8
du u~r 21r 8 22u2!h12~u!, ~2a!

where u12(r ) is the solute-solvent interaction potentia
g12(r )511h12(r ) the associated pair distribution function
andr1

b the solvent bulk density~h1* 5pr1
bd1

3/6 is the solvent
bulk packing fraction!. As in Ref. @17#, g12(r ,r2→0) was
computed from the analytical solution of the PY closure
the OZE. The solvent induced potential of mean for
f ind(r ) is then obtained by numerical integration,

f ind~r !5E
r

`

F~x!dx. ~2b!

In the second route,f ind(r ) is directly computed from the
pair distribution function of solutes at infinite dilution
g22(r ;r2→0)5exp$2b@u22(r )1f ind(r )#% (b[1/kBT). The
OZE at infinite dilution,

g11~r !5r1E drW8h11~r 8!c11~ ur 2r 8u!, ~3a!

g22~r !5r1E drW8h12~r 8!c12~ ur 2r 8u!, ~3b!

g12~r !5r1E drW8h11~r 8!c12~ ur 2r 8u!, ~3c!

must be supplemented by three closures,gi j 5exp(2buij
1gij1Bij), whereg i j (r )5hi j (r )2ci j (r ) and Bi j (r ) are the
series and bridge functions, respectively. As noticed in
introduction, a reliable determination ofBi j (r ) is still diffi-
cult. The simplest alternative is to neglect these quanti
altogether:B22(r )5B11(r )5B12(r )50. Mixed closures with
not all Bi j (r ) equal to zero do not guarantee better resu
~see, for example, Ref.@41# for the potential and@48# for the
structure of hard spheres at a wall!. g22(r ) being given by
Eq. ~3b!, we thus have in this HNC type of calculation

bfHNC
ind ~r !52g22~r !. ~4!

The potential of mean force from Eq.~2b! or Eq. ~4! is the
main input in the computation of the free energy of the
fective fluid described below@that computed from Eq.~2!
being of course much faster to evaluate#. The pertinent vari-
ables are then the chemical potentialm1 of the solvent par-
ticles, the size ratioR, and the packing fractionh2

5pr2d2
3/6 of the large spheres. Since there is no ambigu

in this effective one-component description, we will adopt
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1694 PRE 61J. CLÉMENT-COTTUZ, S. AMOKRANE, AND C. REGNAUT
the next section the notationh[h2 andr[r2 . It will also
be more practical to use the bulk packing fractionh1* instead
of m1 .

B. Pair structure and free energy in the RHNC theory

Among the various modifications of the HNC equati
~generically denoted as MHNC!, the RHNC theory with op-
timized reference system@49–51# is one of the most accurat
integral equation methods for computing structural and th
modynamic properties of simple fluids~for recent applica-
tions see, for example,@52# for Lennard-Jones fluids and@53#
for the Yukawa fluid!. This is a well known method and w
briefly recall here the main points. For an interaction pot
tial f(r ) ~one-component case!, the optimized RHNC theory
consists of the OZE,

g~r !5rE drW8h~r 8!c~ ur 2r 8u!, ~5!

the closure,

g~r !5exp$2bf~r !1g~r !1B0~r !%, ~6!

and the optimization condition, which for a hard sphere r
erence system reads

E drW@g~r !2g0~r !#
]

]s
B0~r ;s!50. ~7!

In Eqs.~6! and~7! one utilizes the bridge functionB0(r ) for
the hard sphere reference system whose pair distribu
functiong0(r ), assumed known, depends on the hard sph
diameters. Equation ~7! then determines the optimums
ensuring a minimum free energy and when iterated until c
vergence together with Eqs.~5! and~6! the soughtg(r ) for a
given f(r ).

Our solution of Eqs.~5!–~7! is technically very similar to
that detailed by Lomba@52#. We used the powerful algo
rithm of Labik et al. @54# based on a combination of th
Newton-Raphson~NR! and successive substitution method
For B0(r ) we took the parametrization of Malijevski an
Labik @55# including the region inside the hard core@56#. For
the pair distribution function of the reference systemg0(r ),
we used the PY solution with the Verlet and Weis correct
@57#. In order to speed up calculations, the Kinoshita a
Harada strategy@58# was found essential, as noted by Lom
@52#. In this strategy, the system matrixH ~negative of the
inverse of the Jacobian! computed under some reference co
dition is stored and used in other conditions. During the
termination of the optimums or at a new density, for ex
ample, one computes the correction of theM Fourier
components ofrg(r ), DG̃ j5Sk51

M H jkCk , without having to
compute and invert the Jacobian in the inner NR loop. O
nevertheless still faces the well known problem with integ
equation methods, that is, the existence of a nonconverg
domain of the algorithm, in the temperature density pla
(T,r). As discussed in the next section, this limitation w
become especially severe with the effective potentialfeff(r)
considered here.

Once the OZE with the RHNC closure is solved, the fr
energy is computed from the reference system free en
r-
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and integrals involvingg(r ), g0(r ), and the Fourier trans
forms h̃(k) andh̃0(k) @Eqs.~10!–~15! in @51#, recalled in the
Appendix#. We notice here that in order to obtain a compu
able expression of the exact free energy~see the Appendix!,
the nonlocal contribution,

b
DA3

N
52

1

2
rE drWE

0

1

dl B~r ;l!
]

]l
g~r ;l!, ~8!

is approximated by the local one,

b
DA3

N
'2

1

2
rE drW B0~r !@g~r !2g0~r !#. ~9!

In Eq. ~8! B(r ;l) andg(r ;l) are the bridge and pair distri
bution functions for an interaction potential

fl~r !5f0~r !1lf1~r !, ~10!

where the charging parameterl allows one to go from the
reference system with interactionf0(r ) to the fully interact-
ing system withf(r ). Equation~9! follows from Eq.~8! by
neglecting the change ofB(r ;l) from l50 to l51. Fol-
lowing Rosenfeld’s discussion@59# of the MHNC theory,
one can obtain a different approximation of the nonlo
term by considering the optimization condition@Eq. ~7!#
written for a given valuel of the charging parameter:

E drW@g~r ;l!2g0~r !#
]

]s~l!
B0„r ;s~l!…50. ~11!

The optimum hard sphere diameter for the potentialfl(r ) is
then s~l!. Equation ~11! can then be integrated by part
giving

b
DA3

N
52

1

2
rE drWH B~r ;1!g~r !2B~r ;0!g0~r !

2E
0

1

dl g~r ;l!
]

]l
B~r ;l!J . ~12!

By assuming thatB(r ;l) belongs to the family of hard
sphere bridge functionsB(r ;l)5B0(r ;l) and using
(]/]l)B0(r ;l)5(]/]s)B0(r ;s)(]s/]l) and Eq.~11!, the
last integral in Eq.~12! can be expressed entirely in terms
the reference system. The nonlocal term then reads

b
DA3

N
52

1

2
rE drWH B0~r ;1!g~r !2B0~r ;0!g0~r !

2E
s~0!

s~1!

ds g0~r ;s!
]

]s
B0~r ;s!J . ~13!

Since B0(r ) is analytical andg0(r ) can be computed by
Fourier transform, the integral in Eq.~13! can be evaluated
readily by numerical integration. This expression of the no
local term is analogous to that in Rosenfeld’s treatment
the MHNC @59#, except for the choice of the reference sy
tem. The difference between the free energies evaluated
expressions~9! and ~13! of the nonlocal term should be
measure of the adequacy of the hard sphere bridge func
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~and the universality assumption@60#! for the rather unusua
interaction potentialfeff(r) considered here.

The free energy can of course be evaluated only out
the nonconvergence domain. It will thus be useful to co
sider the alternative expression

b
A

N
5b

A0

N
1E

0

1

dl Uex~l!, ~14a!

where the energy integralUex computed from the exces
interaction defined in Eq.~10! is evaluated for the valuel of
the charging parameter

Uex~l!5
1

2
rE drW g~r ;l!f1~r !. ~14b!

Equation~14! is well known~see@61#! and has been used i
an equivalent form by Dijkstraet al. @19# to compute the free
energy by Monte Carlo~MC! simulation. Equations~14! will
be used in the next section to estimate the free energy
yond the nonconvergence line.

We mention here that the coexistence lines were obta
from the common tangent instead of the direct Maxwell co
struction ~equating the pressure and chemical potential
coexisting phases!. Although the RHNC guarantees consi
tency between the virial pressure and that obtained by dif
entiating the free energy@50#, numerical uncertainties in th
evaluation of the virial pressure with very large values
g(r ) near contact together with the limitation due to the no
convergence line make the former method more practica

To end this section, we stress that the RHNC free ene
is appropriate only to the fluid branch. The treatment of
solid one by variational perturbation theory~VPT! will be
detailed in the next section.

III. BINARY MIXTURE OF HARD SPHERES

A. Pair distribution function

In this section, we present some results obtained from
formalism of the previous section for a binary mixture
hard spheres. In order to test the quality of the RHNC c
sure for this specific system, we first comparedg(r ) com-
puted with the ‘‘depletion’’ potential obtained by molecul
dynamics~MD! by Biben et al. @17# with the result of the
simulation of the effective fluid~state A in Ref. @17#: R
510, h1* 50.106,h[h250.244!. The excellent agreemen
shown in Fig. 1~a! is not unusual for this rather modera
interaction@with well depthbf ind(d2)'21.62#. Somewhat
less expected is the fact that the RHNC can capture the
structure induced nearr 5d21d1 by the weak oscillation of
f ind(r ) ~the amplitude of its first maximum is less tha
0.15kT!. In contrast, the agreement is less good for a s
point well inside the fluid-solid coexistence region@Fig. 2
with the depletion potentialfdep(r ) given by Eq.~33! in Ref.
@19##. In particular, the RHNC does not reproduce the fi
peak nearr 51.74d2 @Fig. 1~b!# despite its magnitude bein
larger than that nearr 5d21d1 in Fig. 1~a!. This is not really
surprising since this ‘‘extra’’ peak might indeed be the s
nature of a partly solidlikeg(r ). Finally, Fig. 1~c! again
shows a good agreement@62# for a stronger depletion poten
tial computed from Eqs.~2! ~PY1superposition approxima
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FIG. 1. ~a! Pair distribution functiong22(r ) of large spheres
with packing fractionh250.244, for the depletion potential of Re
@17# ~diameter ratioR510, small sphere bulk packing fractionh1*
50.106!. Solid line: RHNC; squares: Monte Carlo@17# and private
communication.~b! g22(r ) at h250.35 for the depletion potentia
fdep of Ref. @19# ~R510, h1* 50.25!. Solid line: RHNC; crosses:
Monte Carlo @19#. ~c! g22(r ) at h250.25 for f ind ~R53, h1*
50.37!. Solid line: RHNC; squares: Monte Carlo@62# @inset shows
f ind computed from Eqs.~2!#.
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tion! for R53, h1* 50.37, h50.25. These results gave u
some confidence in the structure obtained from the RHN

One technical point is worth mentioning here. In order
properly account for the variation off ind(r ) on a scale that is
determined by the solvent diameterd1 , we need an appro
priate mesh spacing. Takingdr50.02d1 means dr
50.002d2 for R510. Because of the constraintdq dr
5p/Nr imposed by the fast Fourier transform algorithm, t
number of mesh pointsNr required for a good resolution in
reciprocal space can be very large. In some instancesNr had
to be as large as 16 384 andM'256 in the inner NR loop
which involves~M,M! matrices. These conditions due to th
very short range off ind(r ) ~at the scale of the big sphere!
illustrate one of the specificities of this effective potent

FIG. 2. ~a! Iso-h1* reduced free energyb f * [b(A/N)h2 vs h2

at R55. RHNC: solid lines; Monte Carlo@19# and private commu-
nication: diamondsh1* 50.13, crossesh1* 50.21, squaresh1*
50.24, circlesh1* 50.30.~b! Same as 3~a! with R510. Solid lines:
RHNC with Eq. ~9!; dashed lines: RHNC with Eq.~13!. Monte
Carlo data: circlesh1* 50.13, crossesh1* 50.17, squaresh1*
50.20, plusesh1* 50.30, trianglesh1* 50.31 ~the solid curves fol-
low the same sequence and the dashed lines are for the last
values ofh1* !.
.

l

when compared to more standard ones~e.g., the Lennard-
Jones potential!.

B. Free energy and fluid-fluid coexistence line

We next computed the RHNC free energy at constanth1*
for the depletion potentialfdep(r ). Figure 2~a! shows the
comparison of the reduced free energy with MC data@19# for
R55, and Fig. 2~b! for R510. We first notice that at lowh1*
the agreement is excellent at all large sphere packing f
tions h2 but it deteriorates for higherh1* especially at high
h2 . A noteworthy feature is that the free energies compu
from Eq. ~9! and from Eq. ~13! of the nonlocal term
bDA3 /N do not give the same results at highh2 . This dis-
crepancy might be an indication of the insufficiency of t
hard sphere bridge function for an effective potential of t
kind of fdep(r ), which is rather narrow and deep near co
tact. The comparison with present MC data does not allow
to say which expression should be preferred. As a rule,
~9! for bDA3 /N would predict a lower critical value ofh1*
than Eq.~13!. A more systematic discussion of this point
deferred to future work and in what follows, the results th
will be discussed will correspond to Eq.~9!.

Figure 2~b! now shows that beyond a certain value ofh1* ,
one faces the problem of nonconvergence~NC! of the algo-
rithm. As discussed elsewhere@63–65#, this is an intrinsic
feature of HNC type integral equations and not the signat
of a physical instability such as a spinodal one. This pro
lem, which constitutes a major drawback of such methods
here especially severe. Direct determination of the coexis
densities indeed revealed it to be impossible, the metast
and unstable parts of the free energy being always in the
domain (h1* ,h2) at all the diameter ratios we investigate
We were then forced to devise anad hocextrapolation pro-
cedure in order to estimate the free energy inside the
domain. This extrapolation is based on Eqs.~14! for the free
energy. We mention here that the free energy computed
this method was numerically consistent with the RHNC fr
energy computed with Eq.~9! ~see Ref.@50# for the role of
the optimization criterion!. A small inconsistency was found
when Eq.~13! was used instead of Eq.~9!. By computing the
energy integralUex(l) in Eq. ~14b! for values ofl increas-
ing from 0 to 1, we reach a certain valuelNC beyond which
the algorithm fails to converge. This value is specific to ea
couple (h1* ,h2) but was never found belowlNC'0.85. In
order to estimate the actual free energy (l51), we then had
to extrapolateUex(l) over a small range. This was shown
be finally equivalent to directly performing a polynomial e
trapolation of the integral@Eq. ~14a!# to l51. By changing
the degree of the polynomial~Fig. 3! we found that the den-
sities at coexistence are not very sensitive to the extrap
tion procedure. Outside the NC domain it is also possible
compare the extrapolated values with the directly compu
ones. As an additional test, the gas and liquid coexiste
densities (h2

g ,h2
l ) were checked against a Maxwell constru

tion made by directly extrapolating the virial pressureP(h2)
in the NC domain. This much more drastic density extrap
lation gave similar coexistence densities for the cases
have tested. WithR510 andh1* 50.262, for example, these
densities were ~0.22, 0.51! with the l extrapolation

ree
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method and~0.21, 0.50! with the P(h2) one. These satisfac
tory tests gave us some confidence in this method of estim
ing the F-F coexistence line. It must be mentioned, howe
that this procedure is rather lengthy, since the optimiz
RHNC must be solved for a series of values ofl, for each set
of (h1* ,h2), besides the required checks of the sensitivity
the extrapolation procedure. Thus it cannot be used in a
tine way.

Figure 4~a! then shows on an enlarged scale the estima
RHNC F-F coexistence lines and that determined by M
simulation@19#. This figure shows that the RHNC lines@free
energies from Eq.~9! and Eq.~13! for bDA3 /N# ‘‘bracket’’
the simulation one. Given the uncertainties in the theory,
is a rather positive observation. On the other hand, the
ward rise of the simulation curve forh2>0.45 in the
(h1 ,h2) representation in Fig. 4~b! is not reproduced by the
theory@the conversion (h1* ,h2)→(h1 ,h2) was made by us-
ing the scaled particle theory expression ofh1* #. We found a
similar behavior on the PY-compressibility coexistence l
@66# of the sticky hard sphere model mapped ontofdep(r ).
The stickiness parametert was converted intoh1* by equat-
ing the second virial coefficients of the sticky potential a
that of fdep(r ) ~these quantities do not, however, strict
play the same role!. A similar observation@67# holds when
the free energy is determined from integration of the vir
equation of state as in Ref.@11#. Whether this is due to the
theoretical free energies being inadequate for highly pac
metastable fluids is at present unclear to us.

Finally, we found it interesting to investigate the influen
of truncating the depletion potential. In Ref.@19# it was con-
jectured that this should have a minor influence on the ph
boundaries, starting from a comparison of theg(r ) deter-
mined with and without the oscillations infdep(r ) beyond
the second zero. In order to estimate the effect of such o
lations we computed several iso-h1* virial pressure curves
with the effective potentialf ind(r ) from Eqs. ~2!. The ex-
ample shown in Fig. 5~R55, h1* 50.32! shows that the
overall effect of the oscillations is to decrease the press
the full potential being more ‘‘attractive’’ than the one tru

FIG. 3. RHNC reduced free energy~minus a linear fit! for fdep

~R510, h1* 50.262!. Filled circles: direct result (l51). Empty
circles: extrapolation tol51 with polynomials of degree 4, 6, an
8 from top to bottom. The arrows indicate the locations of t
common tangent.
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cated after the second zero. Because of the time require
perform thel extrapolation procedure, we did not make
systematic estimation of the coexistence line for such po
tials but we expect the corresponding critical point in t
(h1* ,h2) representation to be lower than that with the tru
cated potential.

C. Fluid-solid branch

To complete the phase diagram, the fluid-solid~F-S!
boundary must be determined. As mentioned at the end
Sec. II, a theory for homogeneous fluids as the RHNC can
deal with the solid phase. We nevertheless tried the entr
criterion of Giaquinta and Giunta@68# but very few zeros of
the residual entropy can actually be determined becaus
the NC limitation~thel extrapolation is useless in this case!.
It is difficult to draw firm conclusions from the points show
in Fig. 6~a! but the line of zero residual entropy is likely t
be below the RHNC F-F line but much above the F-S li
from simulation.

We are thus presently investigating the determination
the F-S line from the density functional theory~see, for ex-
ample,@69,70# and references therein!. As a first estimate we
used a much simpler route based on the well known va
tional perturbation theory expression of the free energy@61#:

A~r!5AHS~r!1^f2fHS&HS ~15!

FIG. 4. ~a! Fluid-fluid coexistence line in theh1* -h2 represen-
tation. Diamonds: RHNC with Eq.~13!; squares: RHNC with Eq.
~9!; circles: Monte Carlo@19#. ~b! Same as 4~a! in the h1-h2 rep-
resentation.
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where the optimum hard sphere diametersopt was obtained
by minimizing A(r). The technical details of our calcula
tion, in particular the parametrization of the radial distrib
tion function ḡHS(r ) for the solid, were identical to those i
the study by Hasegawa@71# of the Yukawa potential. With
fdep, the value ofsopt minimizing A(r) is always equal to
d2 and the method reduces to a perturbation calculat
However, no F-F line could be determined from the VP
with fdep, the free energy curves being supercritical even
h1* 50.35. Since the actualg(r ) for the liquid is very differ-
ent from gHS(r ), especially near contact, the perturbati
treatment is strongly in error. We thus applied the VPT o
to the solid, for which the trueḡ(r ) should not differ much
from ḡHS(r ), especially at highh2 and with a short range
interaction such asfdep~see also the discussion in Ref.@72#!.
For the fluid branch we used instead the RHNC free ene
which indeed yields a F-F line.

As shown in Fig. 6~b!, the region of the sharp minimum
of the solid branch is indeed remarkably well reproduced
the VPT for the solid. The large discrepancies at highh1* and
for h2 below the position of the minimum do not affect th
common tangent construction with the fluid branch. At t
scale required to draw this tangent, using the RHNC val
or the MC ones has no sizable effect~see the crosses nea
h250.5 where the discrepancy is the largest!. For h1* below
0.1, however, the solid boundary moves to lower values
h2 . The solid being then less densely packed, the influe
of fdepon ḡ(r ) might become significant. But since the ma
nitude of fdep is then lower~and the perturbation term ac
cordingly!, the VPT still remains accurate. As a test, we to
h1* 50.05, which corresponds to an abrupt change of
slope of the MC solid branch. We then found~h2

f 50.50,
h2

s50.59! whereas the MC values are~h2
f 50.487, h2

s

50.574!. The F-S line determined from the VPT for th
solid and the RHNC~or MC! data for the fluid is then nearly
identical to that using simulation data for both sides. T

FIG. 5. Influence of the truncation of the effective potential
the pressure.f ind from Eqs.~2! with R55 andh1* 50.32. From top
to bottom: well plus first barrier; full potential, first well only~the
parts of the curves in the nonconvergence domain delimited by
vertical lines were obtained from a cubic spline!.
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hybrid RHNC-VPT method should then provide a reliab
estimate of the F-S boundary, especially for the less d
potentials of the next section.

To summarize this section, we may say that the RHN
theory gives a good description of the structure of the eff
tive fluid, representing a highly asymmetric binary mixtu
despite the fact that the effective potential is rather rem
from that in the reference hard sphere system. The dif
ences in free energies observed when two expressions o
nonlocal term are used might be the signature of the lim
tion of this reference system bridge function. This term
indeed the one involving an explicit contribution of th
bridge function. To assess this point, we are presently inv
tigating an alternative route using Rosenfeld’s density fun
tional theory@73#. Finally, and despite thead hocprocedure
used to estimate the free energy in the nonconvergence
gion and the hybrid construction of the F-S boundary, t
positive comparison with simulation data led us to use t
approach to investigate the role of attractive forces. From
numerical point of view, this situation is actually easier th
that prevailing in hard sphere mixtures, as will be seen
low.

e

FIG. 6. ~a! Fluid-fluid and fluid-solid coexistence lines of th
binary hard sphere mixture (R510). Diamonds: RHNC F-F line
with Eq. ~13!: squares RHNC with Eq.~9!; triangles: points of zero
residual entropy; circles: Monte Carlo@19#. The hybrid RHNC-VPT
F-S line ~not shown! would almost coincide with the MC one.~b!
Iso-h1* reduced free energies vs.h2 for R510. Full curves: VPT
solid branch; crosses: RHNC fluid branch; circles: Monte Ca
@19#. Upper data:h1* 50.13; lower data:h1* 50.31.
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IV. PHASE BOUNDARIES OF THE EFFECTIVE FLUID
IN THE PRESENCE OF ATTRACTIVE FORCES

As stressed in the Introduction, studies of the role of
tractive forces in the highly asymmetric regime are rat
scarce and concerned mainly with structural properties or
potential of mean force. The present work is, to our kno
edge, the first one to report results on the phase diagra
this regime~see@74# for nonadditive hard spheres!. Since we
are interested in the role of attractions, repulsive forces
not be discussed here~we may quote the study in@75# on a
mixture of hard spheres and repulsive Yukawa sm
spheres!. A systematic study will not be attempted, the ma
objective being to show from some selected cases how t
forces may alter the rather ‘‘universal’’ picture associat
with pure hard core interactions. Indeed, one may then w
der how a variety of highly asymmetric colloidal suspensio
may exhibit stable and dense fluid phases. We will thus s
from the general observation@36–44# that attractions be-
tween unlike particles usually favor the dispersed state~one
may roughly say that they lower the energetic contribution
the free energy!. On the other hand, they give rise to
strongly oscillating but still short range induced potent
@43#. Since short range is expected to be less favorable
stable dense fluid, the most favorable situation should b
not too deep and relatively long rangef ind(r ). The first re-
quirement can be achieved by adding an attractive tail to
interaction potentialu12(r ) and the second one by conside
ing solvent particles with attractions@43#. We thus consid-
ered the 12-6 Lennard-Jones potential foru11:

bu11~r !54«11* H S d1

r D 12

2S d1

r D 6J , ~16!

and a Yukawa form foru12:

bu12~r !5H ` r<d12

2«12* exp@2k~r /d1221!#/r r .d12
. ~17!

In Eq. ~16! the unlike spheres hard core diameter was ta
asd125(d21deff)/2 where the ‘‘effective’’ hard core diam
eter of the Lennard-Jones potential was taken such
u11(d

eff)'1.5kT ~other choices could be considered as we!.
The effective potentialfHNC

ind (r ) computed from Eq.~4! is
shown in Fig. 7 for some values of«12* and«11* . When com-
pared to the pure hard sphere case, the most prominent
tures of this effective potential are indeed the desired on
~i! a strong reduction of the well depth at contact and~ii ! the
appearance of an attractive tail extending up to aboutd1
from contact, in agreement with the general discussion p
sented in Ref.@43#. In the absence of a direct compariso
with simulation, it is difficult to know to what extent this i
quantitatively correct but we have checked that these g
trends remain the same whenf ind(r ) is computed as in Ref
@43# ~see also@41,42# for similar considerations!. This is suf-
ficient for our present purpose.

We next determined the F-F and F-S boundaries by us
the same method as for pure hard spheres. As mentione
the previous section, the situation was easier from the
merical point of view. The extent of the nonconvergen
domain being much smaller than in the case of hard sphe
t-
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direct ~i.e., withoutl extrapolation! determination of the F-F
boundary was indeed often possible. The F-F lines with
traction @an example is shown in Fig. 8~a!# occur at much
higher values ofh1* than with pure hard spheres. Highe
values are indeed necessary to produce enough attrac
since at the sameh1* , the effective potential is naturally les
deep than with pure hard spheres. Such high values ofh1*
correspond now to densities appropriate for bulk liquid s
vents. This is in strong contrast with the observation@19# that
for hard sphere mixtures, the value ofh2

f at coexistence is
very low whenh1* is high.

Besides this important observation that a dense fluid
exist even at highh1* , one important point is the position o
the F-F line with respect to the F-S one. Several studies@71#,
@76,77# have shown that with standard interactions, the re
tive distance@in the (T,r) plane# between these boundarie
changes with the interaction range, the F-F transition be
stable with respect to the F-S one for sufficiently long attr
tion range. From the shape off ind(r ) shown in Fig. 7, we
expect a similar trend. Figure 8~a! shows that the F-S line is
now close to the F-F one, although still below it. This su
gests thatf ind(r ) is still not long enough ranged~besides
possible complications with oscillatory potentials!. The gap
between these lines is subject to the uncertainty in the de
mination of the F-F line@recall the discussion of Fig. 4~a!#
but is much reduced when compared with that for pure h
spheres@19#. It is also to be noted that the F-S coexisten
domain is also much narrower. At highh1* , the solid side
boundary is almost a straight line nearh2

s'0.55, far from
that for pure hard spheres. This is a consequence of the
that sopt is greater than the actual hard core diameterd2 of
f ind(r ). In Fig. 8~b!, the optimized free energy of the soli
branch~for h1* 50.419! is compared with that computed b
taking sopt5d2 @this last value corresponds to a seconda
and less deep minimum ofA(r)#. The nonoptimized one is
of course higher and shows a minimum ath2'0.73, a value
close to the solid boundary for hard spheres. However,
construction of the common tangent with the fluid branch

FIG. 7. Effective potentialf ind(r ) with LJ solvent-solvent and
Yukawa solute-solvent interactions from Eqs.~4!, ~6!, and~17! and
with R510 andh1* 50.366. Solid line: pure hard sphere mixtur
dotted line.«11* 50.6, «12* 510, k52.5; dashed line:«11* 50.5, «12*
58, k52.5.
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no longer possible. This shows that the large widening of
F-S domain discussed in Ref.@19# is likely to be specific to
mixtures of pure hard spheres.

V. CONCLUSION

To summarize this work, we may say that the posit
comparison of the RHNC-VPT method with simulation da
for highly asymmetric mixtures of hard spheres allows us
explore other physical systems that are difficult to study
the moment entirely by simulation. In this work, a very lim
ited sample of such a system has actually been investig
but the results show that when attractions are considered
pattern is clearly different from that pertaining to pure ha
spheres. The most important result is perhaps that such
tractions favor the existence of a dense fluid of solute p
ticles, in an equally dense suspending medium. This prov
a natural explanation of the observed stable fluid phase
many real colloidal suspensions and confirms the trends
duced from previous structural studies. On the other ha

FIG. 8. ~a! Influence of the solvent-solvent and solute-solve
attractions on the phase boundaries in theh1* -h2 representation.
Size ratioR510. Squares: pure hard sphere mixture, Monte Ca
data@19#; circles: binary mixture with LJ solvent-solvent interactio
(«11* 50.5) and Yukawa solute-solvent attraction~«12* 58, k52.5!
RHNC-VPT. Full curves: F-S, dashed curves: F-F.~b! Reduced free
energy in the RHNC-VPT@same potential as in~a!, h1* 50.419#.
Fluid branch~full curve!: RHNC. Solid branch: dashed line: fu
VPT ~with sopt!; full curve with circles: PT~diameter fixed tod2!.
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and given then the variety of effective potentials that can
generated by changing the parameters of the solute-sol
and solvent-solvent attractions, one can easily imagine
an appropriate combination of these interactions will lead
an effective potential for which the fluid-fluid transition ca
be more stable than the fluid-solid line, and vice versa. Ho
ever, and besides the amount of numerical work required
such a systematics, further progress in the consistent tr
ment of both the fluid and the solid is necessary to firm
establish the role of the various attractions in the phase
gram. More extensive simulations of the true mixture a
also required for assessing the validity of the effective o
component description. Work on these aspects is currentl
progress.
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APPENDIX

The RHNC free energy per particle is given by@51#

b
A

N
5b

A1

N
1b

A2

N
1b

A3
0

N
1b

DA3

N
,

where

b
A1

N
52 1

2 rE drW$ 1
2 h2~r !1h~r !

2g~r !ln@g~r !exp~bf~r !#%,

b
A2

N
52

1

2r E dkW

~2p!3 $ ln@11rh̃~k!#2rh̃~k!%,

b
DA3

N
52

1

2
rE drWE

0

1

dl B~r ;l!
]

]l
g~r ;l!,

b
A3

0

N
5b

A0

N
2b

A1
0

N
2b

A2
0

N
,

and wherebA1
0/N and bA2

0/N are defined asbA1 /N and
bA2 /N with h(r ), g(r ), and f(r ) replaced by the corre
sponding quantities in the reference system,bA0 /N being
the free energy per particle of the hard sphere reference
tem. This expression ofbA/N can be further simplified by
using the RHNC closure before numerical evaluatio
bA0 /N was computed from Erpenbeck and Wood’s@78# pa-
rametrization of the hard sphere equation of state to rem
consistent with the parametrization ofB0(r ) of Refs.@55,56#
~the Verlet-Weis correction must be computed with the sa
parametrization@52#!. Notice that these references conta
misprints ~the correct coefficient ofh3 in the numerator of
Eq. ~7! in @55# reads20.343 029 8! ~see also@79#!. This has
a small but sizable influence on the value ofbA0 /N ~this
differs from the expression given in Ref.@52#!.
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