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Phase diagram of highly asymmetric binary mixtures: A study of the role of attractive forces
from the effective one-component approach
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The phase diagram of an asymmetric solute-solvent mixture is investigated at the level of the effective
one-component fluid. The solvent is taken into account by computing the potential of mean force between
solute particles at infinite dilution for different models of solvent-solvent and solute-solvent short range inter-
actions. Fluid-fluid and fluid-solid coexistence lines are determined from the free energy in the reference
hypernetted chain theory for the fluid branch and from a variational perturbation theory for the solid one. The
phase boundaries so determined compare well with recently published Monte Carlo data for mixtures of pure
hard spheres. The influence of solute-solvent and solvent-solvent short range attractive forces is then investi-
gated. When compared with pure hard core interactions, these forces are found to produce dramatic changes in
the phase diagram, especially on the solvent packing fractions at which a dense fluid of solutes can be stable
and on the separation of the fluid-fluid and fluid-solid coexistence lines. Finally, the connection of these results
with the behavior of some colloidal suspensions is emphasized.

PACS numbes): 64.70—p, 61.20.Gy, 82.76:y

[. INTRODUCTION sterically stabilized suspensions in which the interactions are
believed to be dominated by hard core repuldi®2—24. It

The phase behavior of asymmetric binary mixtures ofshould be noted here that the depletion attraction invoked in
hard spheres has been the subject of an abundant literaturetfigse interpretations arises from the presence of smaller sized
the past decade, in contrast with the case of mixtures witut otherwise supramolecular objectadded polymers,
attractive forces. A fundamental interest of the former lies insmaller sized solutes, etcbut not from the solvent itself,
the fact that when the hard sphere diameter ftied,/d, is  Which is viewed as an inert backgroufske, however, Ref.
sufficiently high they may undergo a phase separation driveF?2))- On the other hand, the effective interaction between
by purely repulsive forceghereafter 1 and 2 refer to the solqtgs in pure solvent-colloid mixtures, that is, wnhqut such
small and large spheres, respectiveWhile the underlying add|t|<_)nal supramolecular species, has been found in several
mechanism or so called depletion effect was known from th Xperiments to be strongly gffected by several factors, up to
early work on colloid-polymer mixturefsl,2] a new impetus mzn%lijﬁgtﬁ“e/esgfyee:&zg]ogr'?ﬁf?gﬁ;pgr;ﬁr‘e’@%b;%r\;ﬁgy that
EZ?::&g]gl\éinut;)intgepsaertisct:?alfsclt;)él}:]ees V\c')?rlt(hgf Cl)grlr?:tr:aign rn it from effective attraction to effective repulsion. Vari-

” ) 'S th hors indeed pointed ous experiments have also shown that AOT-water in oil mi-
Zernike equation$OZE's), these authors indeed pointed out ¢e|je5 exhibit a behavior that depends strongly on the nature

a possible phase separation in asymmetric mixtures of hargs the oil [28-32. The modification of the surface layer of
spheres. This result being in contradiction with the classicalyqium dodecy! sulfatéSDS [33] or AOT [34] reverse mi-
study by Lebowitz and Rowlinsop] based on the Percus- celles by a cosurfactant is now known to have a strong im-
Yevick (PY) closure, such mixtures have thus been studiethact on the conductivity or intermicellar structure. The be-
by various methods ranging from the OZES], density  havior of such a variety of physical systems, richer than that
functional theory[6] (see also[7] for hard cubes ap- expected from purely steric effects, emphasizes again the
proaches based on the entro8}, the free volume9,10],  competition between entropy and enthalpy, which is well
the virial equation of state and virial expansiofsee, for  known in the theory of ordinary mixtures.
example,[11,17 and [13-15 and references theregirto From the theoretical point of view, studies based on Bax-
computer simulationgsee[16] for early work and[17—-21  ter’s sticky hard sphere modgd5] in the PY approximation
for more recent studi¢sin this last group, the recent study have underlined the effect of short range attractions and in
of Dijkstra et al. [19] has established that, in the effective particular the crucial role played by heteroadhesises, for
one-component representation, the fluid-fluid transition issxample,[36—40). Recently, more realistic models of the
metastable with respect to the fluid-solid one. interactions have been considered and their influence inves-
Besides their intrinsic interest, these studies may be ofigated at the level of the potential of mean force of solutes at
more direct relevance to the interpretation of some experiinfinite dilution both by analytical approach§41-43 and
mental data. Indeed, a picture in terms of pure hard sphergy simulation [44]. These studies emphasized again the
mixtures is often invoked in order to explain the behavior ofstrong impact of attractive forces. The latter has in particular
confirmed the qualitative predictions on the role of solute-
solvent attractions at the level of the potential of mean force
* Author to whom correspondence should be addressed. and the pair distribution function of the solute particles. The
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influence of such attractions on the phase diagram seens®lvent sea at chemical potentja}. In this work we used
thus worth being considered in detail, since previous studiegvo methods for estimating'™(r). In the first one the su-
focused exclusively on structural properties. We have choseperposition approximation is used for the distribution func-
to investigate this by means of the effective one-componention of the solvent about two isolated solutee, for ex-
representation of the mixture first because of the limitationsample,[17,43,417). The mean force between two spheres can
of present theoretical methods. Indeed, no reliable integrahen be expressed §3]

equations of the reference hypernetted ch&rINC) type

exist for highly asymmetric mixtures, because of the lack of T o d

appropriate bridge functionsee, for example, the compari- F(r)= r—zplfo dr'— 7 Uuidr’)gaar’)

son of different closures in Ref41] and the discussion of

the HNC Padepproximation of Attard and Patg$5], who rer’ B,

attempted to compute the bridge functions in the high asym- X Jr—r’ldu u(re+r’ “=uhgy(u), (2a)

metry regime. The situation is not easier if one attempts to

study the real mixture by simulation. Indeed, a study of thepere y,4r) is the solute-solvent interaction potential,
kind of that presented by Dijkstret al.[19] for & pure hard o y_ 1% h (1) the associated pair distribution function,
sphere mixture would be prohibitive in the presence of at-andpb the solvent bulk densityz* :prd3/6 is the solvent
tractions. In addition to the common difficulties in sampling | yl)acking fraction. AS in Re% [17] 1gl(r _.0) was
solute configurations, one should then compute the change | bmputed from the analytical <olution oﬁ‘zth’ep?DY closure of
energy for configurations involving several thousands ole OZE. The solvent induced potential of mean force
small particlesand possibly a few hundreds of large ones #"(r) is.then obtained by numerical integration

Finally, one important result of that study is the fact that the '

fluid-solid (F-S coexistence line obtained from the simula- .

tion of the true mixture is not very different from that of the ¢"‘d(r)=f F(x)dx. (2b)

effective fluid. The situation is less clear for the fluid-fluid r

(F-P) line, the much higher effective packing fractiop$ of A

the small spheres then involved prohibiting direct simulation  In the second routep™(r) is directly computed from the

of the mixture (see, however[20]). The good agreement pair distribution function of solutes at infinite dilution:

between both types of simulations at loyi (see also Ref.  U2(r;pa—0)=exp{—Blux(r) + ¢"(r) ]} (B=1kgT). The

[17] for a similar observation on the pair distribution func- OZE at infinite dilution,

tion of large sphergssuggests that the effective fluid repre-

sentation of the kind adopted here should be adequate, at >, , ,

least for stressing the qualitative changes introduced by at- 711(r):p1j dr"hyy(ren((r=r’), (3a

tractive forces in the phase diagram at high size asymmetry.

As specified above, this aspect is indeed the main objective

of this work. '}/22(r):plf di'hy(r’)ci|r=r')]), (3b)
This paper is organized as follows: In Sec. Il, the theoret-

ical tools required to compute the phase diagram are briefly

presented. They are tested against simulation data for hard 712(f):P1f di’hyy(r ey r—r'|), (30)

sphere mixtures in Sec. lll. Finally, results with attractive

forces are presented in Sec. IV.
must be supplemented by three closurgg=exp(—pu;

+ % +Bjj), where y;;(r) =h;j;(r) —c;;(r) andB;;(r) are the
series and bridge functions, respectively. As noticed in the
A. Potential of mean force for solutes at infinite dilution introduction, a reliable determination &;(r) is still diffi-

cult. The simplest alternative is to neglect these quantities
altogetherB,,(r)=B1;(r) =B,(r) =0. Mixed closures with
not all B;;(r) equal to zero do not guarantee better results
(see, for example, Ref41] for the potential andl48] for the
gstructure of hard spheres at a waly,,(r) being given by
Eq. (3b), we thus have in this HNC type of calculation

Il. THEORETICAL BACKGROUND

The description of asymmetric mixtures at the effective
one-component or McMillan-Mayer level is based on the
potential of mean force at infinite dilution of the solutes and
fixed solvent chemical potential, [46]. It can also be de-
fined by formally integrating over the solvent degrees o
freedom(see, for exampld,17] and[19]). For practical ap-
plications of this formalism one usually neglects the many ind
body nature of this potential, and assumes it as pairwise ad- Bbrnc(r)=—vzoAT). (4)
ditive. The study of the mixture is thus reduced to that of a
one-component fluid of solute particles interacting with anThe potential of mean force from E(b) or Eq. (4) is the
effective pair potentials®f(r), which readsassuming inter- main input in the computation of the free energy of the ef-

actions with spherical symmetry fective fluid described belovithat computed from Eq(2)
_ being of course much faster to evaluat€he pertinent vari-
() =ug(r)+ ¢"(r), (1)  ables are then the chemical potential of the solvent par-

ticles, the size ratioR, and the packing fractionz,
whereu,,(r) is the direct solute-solute interaction potential = 7rp2d§/6 of the large spheres. Since there is no ambiguity
and ¢'"(r) that between two solute particles induced by thein this effective one-component description, we will adopt in
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the next section the notation= 7, andp=p,. It will also  and integrals involvingy(r), go(r), and the Fourier trans-
be more practical to use the bulk packing fractighinstead formsﬁ(k) andﬁo(k) [Egs.(10)—(15) in [51], recalled in the

of uy. Appendix]. We notice here that in order to obtain a comput-
able expression of the exact free enefgge the Appendjx
B. Pair structure and free energy in the RHNC theory the nonlocal contribution,
Among the various modifications of the HNC equation AA 1 1 P
; . 3 S
(generically denoted as MHN(Cthe RHNC theory with op- 'BT: — Epf er d\ B(r;\) Xg(r;)\), 8
0

timized reference systefd9-51] is one of the most accurate
integral equation methods for computing structural and ther- )
modynamic properties of simple fluidéor recent applica- 'S @PProximated by the local one,

tions see, for exampl€52] for Lennard-Jones fluids ané3] AA 1

for the Yukawa fluid. This is a well known method and we 3_3% - _pf di Bo(r)[g(r)—do(r)]. 9
briefly recall here the main points. For an interaction poten- N 2

tial ¢(r) (one-component cagehe optimized RHNC theory

consists of the OZE, In Eq. (8) B(r;\) andg(r;\) are the bridge and pair distri-

bution functions for an interaction potential
yn)=p | arhirer—r), ) Br(1)= o1 N ba(1), 10

where the charging parametkrallows one to go from the
reference system with interactieby(r) to the fully interact-
g(r)=exp{— Be(r)+ y(r)+By(r)}, (6)  ing system withe(r). Equation(9) follows from Eq.(8) by
neglecting the change @(r;\) from A=0 to A=1. Fol-
and the optimization condition, which for a hard sphere ref-lowing Rosenfeld’s discussiof69] of the MHNC theory,
erence system reads one can obtain a different approximation of the nonlocal
term by considering the optimization conditiiq. (7)]
written for a given valuex of the charging parameter:

the closure,

J
f drlg(r) = go(r)] 7 ~Bo(r; o) =0. 7)

7 . (9 . J—
In Egs.(6) and(7) one utilizes the bridge functioB(r) for f drig(rin) =go(r)] do(\) Bo(rie(A)=0. (1D

the hard sphere reference system whose pair distribution
functiongy(r), assumed known, depends on the hard spheréhe optimum hard sphere diameter for the potentig(r) is
diametero. Equation(7) then determines the optimum  then o(\). Equation(11) can then be integrated by parts,
ensuring a minimum free energy and when iterated until congiving
vergence together with Eq&) and(6) the soughg(r) for a
given ¢(r). A1 [ arl B0 110

Our solution of Eqs(5)—(7) is technically very similar to B N 2P Fi B(ri1)g(r) = B(r;0)go(r)
that detailed by Lomb#52]. We used the powerful algo-
rithm of Labik et al. [54] based on a combination of the
Newton-RaphsoriNR) and successive substitution methods.
For By(r) we took the parametrization of Malijevski and
Labik [55] including the region inside the hard cd&6]. For By assuming thatB(r;\) belongs to the family of hard
the pair distribution function of the reference systggir),  sphere bridge functionsB(r;\)=By(r;\) and using
we used the PY solution with the Verlet and Weis correction(d/d\)By(r;\)=(d/da)By(r;o)(da/d\) and Eq.(11), the
[57]. In order to speed up calculations, the Kinoshita andast integral in Eq(12) can be expressed entirely in terms of
Harada strateg}58] was found essential, as noted by Lombathe reference system. The nonlocal term then reads
[52]. In this strategy, the system matrix (negative of the

1 J
—fod)\g(r;)\)ﬁB(r;)\)J. (12

inverse of the Jacobiacomputed under some reference con- AA; R

dition is stored and used in other conditions. During the de- BN~ Epj dr[ Bo(r;1)9(r) = Bo(r;0)go(r)
termination of the optimuny or at a new density, for ex-

ample, one computes the correction of th Fourier o(1) NS _

components of y(r), AT, =E¥:1ij\Pk, without having to L(o) dor go(r;o) do Bolr3o) - (13

compute and invert the Jacobian in the inner NR loop. One
nevertheless still faces the well known problem with integralSince By(r) is analytical andgy(r) can be computed by
equation methods, that is, the existence of a nonconvergen¢®urier transform, the integral in E¢L3) can be evaluated
domain of the algorithm, in the temperature density planeeadily by numerical integration. This expression of the non-
(T,p). As discussed in the next section, this limitation will local term is analogous to that in Rosenfeld’s treatment of
become especially severe with the effective poterti®lir)  the MHNC[59], except for the choice of the reference sys-
considered here. tem. The difference between the free energies evaluated with
Once the OZE with the RHNC closure is solved, the freeexpressiong9) and (13) of the nonlocal term should be a
energy is computed from the reference system free energyeasure of the adequacy of the hard sphere bridge function
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(and the universality assumpti¢60]) for the rather unusual
interaction potentialp®™(r) considered here.

The free energy can of course be evaluated only outsids
the nonconvergence domain. It will thus be useful to con-
sider the alternative expression

g,,(1/d)

A A°+Jld>\uem 14
BNTPN . (), (149
where the energy integrdl®* computed from the excess
interaction defined in Eq10) is evaluated for the value of
the charging parameter

1
uexmzyf dF ;) a(r). (14b)

Equation(14) is well known(see[61]) and has been used in
an equivalent form by Dijkstrat al.[19] to compute the free
energy by Monte Carl@MC) simulation. Equation§l4) will

be used in the next section to estimate the free energy be
yond the nonconvergence line.

We mention here that the coexistence lines were obtainer _
from the common tangent instead of the direct Maxwell con- g‘“
struction (equating the pressure and chemical potential of g
coexisting phasegsAlthough the RHNC guarantees consis-
tency between the virial pressure and that obtained by differ
entiating the free enerdgyb0], numerical uncertainties in the
evaluation of the virial pressure with very large values of
g(r) near contact together with the limitation due to the non-
convergence line make the former method more practical.

To end this section, we stress that the RHNC free energ)
is appropriate only to the fluid branch. The treatment of the
solid one by variational perturbation theofyPT) will be
detailed in the next section.

(b)

I1l. BINARY MIXTURE OF HARD SPHERES
A. Pair distribution function

In this section, we present some results obtained from th(f_g\.
formalism of the previous section for a binary mixture of =
hard spheres. In order to test the quality of the RHNC clo- &'
sure for this specific system, we first compagd) com-
puted with the “depletion” potential obtained by molecular
dynamics(MD) by Biben et al. [17] with the result of the
simulation of the effective fluidstate A in Ref. [17]: R
=10, 7 =0.106, n=7,=0.244. The excellent agreement
shown in Fig. 1a) is not unusual for this rather moderate
interaction[with well depth 8¢™(d,)~ — 1.62]. Somewhat ©
less expected is the fact that the RHNC can capture the fine
structure induced near=d,+d; by the weak oscillation of
¢"(r) (the amplitude of its first maximum is less than
0.1%T). In contrast, the agreement is less good for a state
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point well inside the fluid-solid coexistence regipfig. 2
with the depletion potentiabger) given by Eq.(33) in Ref.

FIG. 1. (a) Pair distribution functiong,,(r) of large spheres

with packing fractionn,=0.244, for the depletion potential of Ref.

[19]]. In particular, the RHNC does not reproduce the first{17] (diameter ratioR= 10, small sphere bulk packing fractiopf

peak near = 1.74d, [Fig. 1(b)] despite its magnitude being
larger than that near=d,+d; in Fig. 1(a). This is not really

=0.106. Solid line: RHNC; squares: Monte Caifld7] and private
communication.(b) g,(r) at 7,=0.35 for the depletion potential

surprising since this “extra” peak might indeed be the sig- ¢, of Ref. [19] (R=10, 7} =0.25. Solid line: RHNC; crosses:

nature of a partly solidlikeg(r). Finally, Fig. 1c) again
shows a good agreem€li2] for a stronger depletion poten-
tial computed from Eqs(2) (PY+superposition approxima-

Monte Carlo[19]. (c) goo(r) at 7,=0.25 for ™ (R=3, 7}
=0.37). Solid line: RHNC; squares: Monte Carl62] [inset shows
¢ computed from Eqs(2)].
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L e o e B when compared to more standard oriesy., the Lennard-
i ] Jones potential

B. Free energy and fluid-fluid coexistence line

We next computed the RHNC free energy at consight
for the depletion potentialpyefr). Figure 2a) shows the
comparison of the reduced free energy with MC da® for
R=5, and Fig. 2b) for R=10. We first notice that at low}
the agreement is excellent at all large sphere packing frac-
tions 7, but it deteriorates for highen] especially at high
7, . A noteworthy feature is that the free energies computed
from Eq. (99 and from Eq.(13) of the nonlocal term
BAA3/N do not give the same results at high. This dis-
crepancy might be an indication of the insufficiency of the
hard sphere bridge function for an effective potential of the
kind of ¢ge{r), which is rather narrow and deep near con-
tact. The comparison with present MC data does not allow us
to say which expression should be preferred. As a rule, Eq.
(9) for BAA3/N would predict a lower critical value of}
than Eq.(13). A more systematic discussion of this point is
deferred to future work and in what follows, the results that
will be discussed will correspond to E(f).

Figure Zb) now shows that beyond a certain valuergf,

A . one faces the problem of nonconvergef€) of the algo-
1k 4 rithm. As discussed elsewhe[63—-65, this is an intrinsic

] ; feature of HNC type integral equations and not the signature
a5 L : v . A of a physical instability such as a spinodal one. This prob-
I By o lem, which constitutes a major drawback of such methods, is
sl AAAA% | here especially severe. Direct determination of the coexisting
| < | densities indeed revealed it to be impossible, the metastable

5 e and unstable parts of the free energy being always in the NC
25 domain (57 ,7,) at all the diameter ratios we investigated.
0 0.1 02 0, 0.3 04 0.5 We were then forced to devise ad hocextrapolation pro-
cedure in order to estimate the free energy inside the NC
FIG. 2. (a) Iso-7* reduced free energgf* =B(A/N) 7, VS 7, domain. This extrapolation is based on E{s}) for the free
atR=>5. RHNC: solid lines; Monte Carlf19] and private commu- energy. We mention here that the free energy computed by
nication: diamonds 5} =0.13, crosseszn? =0.21, squaresy? this method was numerically consistent with the RHNC free
=0.24, circlesn? =0.30.(b) Same as @) with R=10. Solid lines:  energy computed with E(9) (see Ref[50] for the role of
RHNC with Eq. (9); dashed lines: RHNC with Eq13). Monte  the optimization criterion A small inconsistency was found
Carlo data: circlesy} =0.13, crossesn} =0.17, squaresy;} when Eq.(13) was used instead of E(P). By computing the
=0.20, plusesy; =0.30, trianglesy; =0.31 (the solid curves fol-  energy integralJ®(\) in Eq. (14b) for values of\ increas-
low the same sequence and the dashed lines are for the last thrggy from O to 1, we reach a certain valigc beyond which
values of7y). the algorithm fails to converge. This value is specific to each
couple (7 ,7,) but was never found belowyc~0.85. In
order to estimate the actual free energy=1), we then had
tion) for R=3, »} =0.37, »=0.25. These results gave us to extrapolatdJ®(\) over a small range. This was shown to
some confidence in the structure obtained from the RHNC.be finally equivalent to directly performing a polynomial ex-
One technical point is worth mentioning here. In order totrapolation of the integrdlEq. (148] to A =1. By changing
properly account for the variation @f"%(r) on a scale thatis the degree of the polynomidéfFig. 3) we found that the den-
determined by the solvent diametéy, we need an appro- Sities at coexistence are not very sensitive to the extrapola-
priate mesh spacing. Takingdr=0.02d,; means dr  tion procedure. Outside the NC domain it is also possible to
=0.0021, for R=10. Because of the constrairdiqdr compare the extrapolated values with the directly computed
=x/N, imposed by the fast Fourier transform algorithm, theones. As an additional test, the gas and liquid coexistence
number of mesh pointhl, required for a good resolution in densities 3, 75) were checked against a Maxwell construc-
reciprocal space can be very large. In some instaNgdsad  tion made by directly extrapolating the virial pressérer,)
to be as large as 16384 ai~ 256 in the inner NR loop in the NC domain. This much more drastic density extrapo-
which involves(M,M) matrices. These conditions due to the lation gave similar coexistence densities for the cases we
very short range of»™(r) (at the scale of the big sphejes have tested. WitlR= 10 and#} =0.262, for example, these
illustrate one of the specificities of this effective potential densities were (0.22,0.5)1 with the \ extrapolation
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FIG. 3. RHNC reduced free energsinus a linear fitfor ¢4
(R=10, 57 =0.262. Filled circles: direct result \=1). Empty 0.3
circles: extrapolation ta =1 with polynomials of degree 4, 6, and
8 from top to bottom. The arrows indicate the locations of the
common tangent. & 02

method and0.21, 0.50 with the P(7,) one. These satisfac-
tory tests gave us some confidence in this method of estima
ing the F-F coexistence line. It must be mentioned, however o1 - e
that this procedure is rather lengthy, since the optimizec
RHNC must be solved for a series of values\pfor each set ‘
of (77 ,7,), besides the required checks of the sensitivity to 0 o1 02 03 0.4 05 06

the extrapolation procedure. Thus it cannot be used in a rou (b) n,

tine way.

Figure 4a) then shows on an enlarged scale the estimated FIG. 4. (a) Fluid-fluid coexistence line in theyj - 7, represen-
RHNC F-F coexistence lines and that determined by mdctation. Diamonds: RHNC with Eq(13); squares: RHNC with Eq.
simulation[19]. This figure shows that the RHNC linflsee  (9); circles: Monte Carld19]. (b) Same as @) in the 7,-7, rep-
energies from Eq(9) and Eq.(13) for BAAz/N] “bracket”  resentation.
the simulation one. Given the uncertainties in the theory, this
is a rather positive observation. On the other hand, the upcated after the second zero. Because of the time required to
ward rise of the simulation curve for,=0.45 in the perform the\ extrapolation procedure, we did not make a
(m1,7,) representation in Fig.(8) is not reproduced by the systematic estimation of the coexistence line for such poten-
theory[the conversion ﬁ"]'-‘ 7772)_>(771,772) was made by us- tials but we expect the Corresponding critical pOint in the
ing the scaled particle theory expressiondf]. We found a (771 . 72) representation to be lower than that with the trun-
similar behavior on the PY-compressibility coexistence linecated potential.

[66] of the sticky hard sphere model mapped ogig(r).
The stickiness parameterwas converted intoy} by equat- C. Fluid-solid branch

ing the second virial coefficients of the sticky potential and  To complete the phase diagram, the fluid-solfe+S)
that of ¢gefr) (these quantities do not, however, strictly poundary must be determined. As mentioned at the end of
play the same role A similar observatior{67] holds when  sec. |1, a theory for homogeneous fluids as the RHNC cannot
the free energy is determined from integration of the virialgea| with the solid phase. We nevertheless tried the entropy
equation of state as in Refl1]. Whether this is due to the criterion of Giaquinta and Giunt@8] but very few zeros of
theoretical free energies being inadequate for highly packeghe residual entropy can actually be determined because of
metastable fluids is at present unclear to us. the NC limitation(the \ extrapolation is useless in this case
Finally, we found it interesting to investigate the influence|t js difficult to draw firm conclusions from the points shown
of truncating the depletion potential. In Ret9] it was con- iy Fig. 6a) but the line of zero residual entropy is likely to
jectured that this should have a minor influence on the phasge pelow the RHNC FE-E line but much above the E-S line
boundaries, starting from a comparison of @) deter-  from simulation.

mined with and without the oscillations itqe{r) beyond We are thus presently investigating the determination of
the second zero. In order to estimate the effect of such oscithe F-S line from the density functional theoisee, for ex-
lations we computed several isg- virial pressure curves ample,[69,70 and references thergims a first estimate we
with the effective potentialy™(r) from Egs.(2). The ex- used a much simpler route based on the well known varia-
ample shown in Fig. 5R=5, 7} =0.32 shows that the tional perturbation theory expression of the free en¢gy:
overall effect of the oscillations is to decrease the pressure,

the full potential being more “attractive” than the one trun- A(p)=Aus(p) +{d— dusus (15
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FIG. 5. Influence of the truncation of the effective potential on
the pressurep™ from Egs.(2) with R=5 and} =0.32. From top
to bottom: well plus first barrier; full potential, first well onlghe =
parts of the curves in the nonconvergence domain delimited by th
vertical lines were obtained from a cubic spline

where the optimum hard sphere diametéf" was obtained
by minimizing A(p). The technical details of our calcula-
tion, in particular the parametrization of the radial distribu- . , . , ‘ | ,
tion functiongpg(r) for the solid, were identical to those in 0 0.2 0.4 0.6 0.8
the study by Hasegaw@1] of the Yukawa potential. With (b)
baep: the value ofc°P" minimizing A(p) is always equal to
d, and the method reduces to a perturbation calculation. FIG. 6. (a) Fluid-fluid and fluid-solid coexistence lines of the
However, no F-F line could be determined from the VPTbinary hard sphere mixtureR=10). Diamonds: RHNC F-F line
with ¢qep, the free energy curves being supercritical even fowith Eq. (13): squares RHNC with Eq9); triangles: points of zero
7% =0.35. Since the actua(r) for the liquid is very differ-  residual entropy; circles: Monte Cafl#9]. The hybrid RHNC-VPT
ent from gus(r), especially near contact, the perturbation F-S line (not shown would almost coincide with the MC on¢gb)
treatment is strongly in error. We thus applied the VPT only!S0-71 reduced free energies vs, for R=10. Full curves: VPT
to the solid, for which the trug(r) should not differ much solid branch; cros*ses: RHNC fluid bra*nch; circles: Monte Carlo
from Gne(r), especially at highy, and with a short range [19)- Upper datay =0.13; lower dataz; =0.31.
interaction such agge, (see also the discussion in RET2]).
For the fluid branch we used instead the RHNC free energ
which indeed yields a F-F line.

As shown in Fig. @), the region of the sharp minimum

-10

M,

hybrid RHNC-VPT method should then provide a reliable
Yestimate of the F-S boundary, especially for the less deep
potentials of the next section.

To summarize this section, we may say that the RHNC

?r]: ﬂ:/epiopd ?k:ancr;.és _'l_nhdefd rergarkably wgll retpr_o (:‘:Czd b3{heory gives a good description of the structure of the effec-
© or the solid. The large discrepancies at highan tive fluid, representing a highly asymmetric binary mixture

for 7, below the position of the r.”"“m“m QO not affect the despite the fact that the effective potential is rather remote
common tangent construction with the fluid branch. At thefrom that in the reference hard sphere system. The differ-

scale required to draw this tangent, using the RHNC valueg, o i, free energies observed when two expressions of the
or the MC ones has no sizable effdsee the CrOSSes Near nonjocal term are used might be the signature of the limita-
172=0.5 where the discrepancy is the largeBor 77 below (o of this reference system bridge function. This term is
0.1, however, the solid boundary moves to lower values ofpgeed the one involving an explicit contribution of the
7. The solid bemg then less .der_1.sely packec_], the Influencgridge function. To assess this point, we are presently inves-
of ¢gepong(r) might become significant. But since the mag- tigating an alternative route using Rosenfeld’s density func-
nitude of ¢pgep is then lower(and the perturbation term ac- tional theory[73]. Finally, and despite thad hocprocedure
cordingly), the VPT still remains accurate. As a test, we t00ksed to estimate the free energy in the nonconvergence re-
71 =0.05, which corresponds to an abrupt change of thgjion and the hybrid construction of the F-S boundary, the
slope of the MC solid branch. We then fourigy=0.50,  positive comparison with simulation data led us to use this
75=0.59 whereas the MC values aré;,=0.487, %5  approach to investigate the role of attractive forces. From the
=0.574. The F-S line determined from the VPT for the numerical point of view, this situation is actually easier than
solid and the RHNGor MC) data for the fluid is then nearly that prevailing in hard sphere mixtures, as will be seen be-
identical to that using simulation data for both sides. Thislow.
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IV. PHASE BOUNDARIES OF THE EFFECTIVE FLUID ' ' ' ' ' ' ' '
IN THE PRESENCE OF ATTRACTIVE FORCES 4 r T

As stressed in the Introduction, studies of the role of at-
tractive forces in the highly asymmetric regime are rather
scarce and concerned mainly with structural properties or the
potential of mean force. The present work is, to our knowl- 2
edge, the first one to report results on the phase diagram il=
this regime(see[ 74] for nonadditive hard spheresSince we 2r
are interested in the role of attractions, repulsive forces will i
not be discussed hefee may quote the study ifv5] on a
mixture of hard spheres and repulsive Yukawa small
spheres A systematic study will not be attempted, the main 6L
objective being to show from some selected cases how thes
forces may alter the rather “universal” picture associated
with pure hard core interactions. Indeed, one may then won- d
der how a variety of highly asymmetric colloidal suspensions !
may exhibit stable and den;e fluid phases. We will thus start F|G. 7. Effective potentialb™(r) with LJ solvent-solvent and
from the general observatiof86—44 that attractions be- vyukawa solute-solvent interactions from E¢4), (6), and(17) and
tween unlike particles usually favor the dispersed staf®  with R=10 and»* =0.366. Solid line: pure hard sphere mixture;
may roughly say that they lower the energetic contribution tadotted line.s¥,=0.6, £3,=10, k=2.5; dashed lines%,=0.5, &%,
the free energy On the other hand, they give rise to a =8, k=2.5.
strongly oscillating but still short range induced potential
[43]. Since short range is expected to be less favorable to direct(i.e., without\ extrapolation determination of the F-F
stable dense fluid, the most favorable situation should be boundary was indeed often possible. The F-F lines with at-
not too deep and relatively long rangé™(r). The first re- traction[an example is shown in Fig.(&] occur at much
quirement can be achieved by adding an attractive tail to thkigher values ofp} than with pure hard spheres. Higher
interaction potentiali;(r) and the second one by consider- values are indeed necessary to produce enough attraction,
ing solvent particles with attractiorf@3]. We thus consid-  since at the same? , the effective potential is naturally less

'
IS
T

ered the 12-6 Lennard-Jones potential digy: deep than with pure hard spheres. Such high values}of
PRECHNIRY: correspor_ld.npw to densities app_ropriate for bulk liquid sol-
Bua(r) =4s’{1[ (—1) - ( —1) ] (16) Vents. This is in strong contrast with the observafib®] that
r r ’ for hard sphere mixtures, the value oi at coexistence is
very low whenj is high.
and a Yukawa form fou,: Besides this important observation that a dense fluid can
o r<d exist even at highy} , one important point is the position of
Bu(r) = r<di 17 the F-F line with respect to the F-S one. Several studiéh
12 —erexg —k(r/dp—1)]/r r>dpy [76,77 have shown that with standard interactions, the rela-

tive distancdin the (T,p) plang between these boundaries

In Eq. (16) the unlike spheres hard core diameter was takeighanges with the interaction range, the F-F transition being
asd;,= (d,+d®")/2 where the “effective” hard core diam- stable with respect to the F-S one for sufficiently long attrac-
eter of the Lennard-Jones potential was taken such thdion range. From the shape @"(r) shown in Fig. 7, we
uy,(d®M~1.5kT (other choices could be considered as yell expect a similar trend. Figurd® shows that the F-S line is

The effective potentia{b',ﬂ,‘ﬁ,c(r) computed from Eq(4) is now close to the F-F one, although still below it. This sug-
shown in Fig. 7 for some values ef, ands%;. When com-  gests thaty"™(r) is still not long enough rangetbesides
pared to the pure hard sphere case, the most prominent fe0Ssible complications with oscillatory potentialShe gap
tures of this effective potential are indeed the desired oned€tween these lines is subject to the uncertainty in the deter-
(i) a strong reduction of the well depth at contact &indthe ~ Mination of the F-F lingrecall the discussion of Fig.(#]
appearance of an attractive tail extending up to abalt 5 but is much reduced when compared with that for pure hard
from contact, in agreement with the general discussion presPhereg19]. It is also to be noted that the F-S coexistence
sented in Ref[43]. In the absence of a direct comparison domain is also much narrower. At highy , the solid side
with simulation, it is difficult to know to what extent this is boundary is almost a straight line neg}~0.55, far from
quantitatively correct but we have checked that these grogéat for pure hard spheres. This is a consequence of the fact
trends remain the same whet(r) is computed as in Ref. that o is greater than the actual hard core diamekenof
[43] (see alsd41,42) for similar considerations This is suf-  ¢"(r). In Fig. 8b), the optimized free energy of the solid
ficient for our present purpose. branch(for »7 =0.419 is compared with that computed by

We next determined the F-F and F-S boundaries by usingaking o°"'=d, [this last value corresponds to a secondary
the same method as for pure hard spheres. As mentioned &nd less deep minimum &(p)]. The nonoptimized one is
the previous section, the situation was easier from the nuef course higher and shows a minimumsgt~0.73, a value
merical point of view. The extent of the nonconvergenceclose to the solid boundary for hard spheres. However, the
domain being much smaller than in the case of hard spheresonstruction of the common tangent with the fluid branch is
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— and given then the variety of effective potentials that can be
generated by changing the parameters of the solute-solvent
and solvent-solvent attractions, one can easily imagine that
an appropriate combination of these interactions will lead to
an effective potential for which the fluid-fluid transition can

7 be more stable than the fluid-solid line, and vice versa. How-
ever, and besides the amount of numerical work required by
N such a systematics, further progress in the consistent treat-
ment of both the fluid and the solid is necessary to firmly
establish the role of the various attractions in the phase dia-
gram. More extensive simulations of the true mixture are
also required for assessing the validity of the effective one-
I component description. Work on these aspects is currently in

06 08 progress.
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S I APPENDIX
i The RHNC free energy per particle is given [B1]
O i ] A A A, Al AA,
N —=B8—+B—+B—+B——
| . ! R ‘ BN’BN’BN'BN’BN’
0 0.2 0.4 0.6 0.8
(b) n, where
FIG. 8. (a) Influence of the solvent-solvent and solute-solvent A 1 1o
attractions on the phase boundaries in tjie 7, representation. BN~"2 Pf di{z h=(r)+h(r)
Size ratioR=10. Squares: pure hard sphere mixture, Monte Carlo
data[19]; circles: binary mixture with LJ solvent-solvent interaction —g(n)In[g(r)exp Bo(r)l},
(e1,=0.5) and Yukawa solute-solvent attractitsi,=8, x=2.5)
RHNC-VPT. Full curves: F-S, dashed curves: Ri#j.Reduced free A, 1 dk _ 5
energy in the RHNC-VPTsame potential as ifa), 7} =0.419. —=— —f ——={In[1+ph(k)]—ph(k)},
Fluid branch(full curve): RHNC. Solid branch: dashed line: full N 2p ) (2m)
VPT (with a°PY); full curve with circles: PT(diameter fixed tad,).
BAAS ! Jd*Jlde( N g(rn)
. . . ~ 9P r rA) = glriA),
no longer possible. This shows that the large widening of the N 2 0 IN

F-S domain discussed in R¢fL9] is likely to be specific to
mixtures of pure hard spheres. A A, AY A
BN =BN BN BN

V. CONCLUSION and whereBAY/N and BAY/N are defined aBA;/N and

To summarize this work, we may say that the positiveBA,/N with h(r), g(r), and ¢(r) replaced by the corre-
comparison of the RHNC-VPT method with simulation datasponding quantities in the reference systgsd,/N being
for highly asymmetric mixtures of hard spheres allows us tathe free energy per particle of the hard sphere reference sys-
explore other physical systems that are difficult to study fotem. This expression gBA/N can be further simplified by
the moment entirely by simulation. In this work, a very lim- using the RHNC closure before numerical evaluation.
ited sample of such a system has actually been investigate@A,/N was computed from Erpenbeck and Wool¥8] pa-
but the results show that when attractions are considered, tirametrization of the hard sphere equation of state to remain
pattern is clearly different from that pertaining to pure hardconsistent with the parametrization B§(r) of Refs.[55,56|
spheres. The most important result is perhaps that such atthe Verlet-Weis correction must be computed with the same
tractions favor the existence of a dense fluid of solute parparametrization52]). Notice that these references contain
ticles, in an equally dense suspending medium. This providesiisprints (the correct coefficient of,® in the numerator of
a natural explanation of the observed stable fluid phases dq. (7) in [55] reads—0.343 029 8 (see alsd79]). This has
many real colloidal suspensions and confirms the trends dex small but sizable influence on the value @,/N (this
duced from previous structural studies. On the other handliffers from the expression given in R¢b2]).
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